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Optimal control results for semilinear
integro-differential stochastic systems via
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Abstract
This paper presents optimal control results for second-order semilinear integro-

differential stochastic systems in Hilbert space. Using Banach’s fixed point the-
orem, we derive the existence and uniqueness of the mild solution. The optimal
control is demonstrated through the minimizing sequence approach and Mazur’s
lemma. Our approach integrates resolvent operator theory to manage the sys-
tem’s integral and stochastic components effectively. We derive necessary and
sufficient optimality conditions and validate our theoretical results through an
illustrative example.
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1 Introduction

Optimal control theory for dynamical systems involves determining control inputs
that optimize a performance criterion while steering the system from an initial to a
desired state. Examples include designing efficient flight paths for aircraft to mini-
mize fuel consumption, optimizing investment portfolios to maximize returns while
managing risk, and developing control strategies for automated manufacturing pro-
cesses to enhance productivity. These applications demonstrate how optimal control
theory can improve the performance, stability, and efficiency of various dynamic sys-
tems across different fields.

The work of Balakrishnan, described in [1], systematically examines optimal
control problems in the context of infinite-dimensional semilinear systems. Addi-
tionally, the study uses state and control variables in Banach spaces and relies on
the concept of bounded resolvent to obtain results. Expanding on the semicontinuity
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of integral functions at the lower end, Papageorgiou [2] builds on the seminal work
of Casting and Clauzure. This study examines the existence of optimal controls in
Banach spaces for nonlinear systems across various system classes, imposing specific
conditions for optimal control existence. Papageorgiou also makes a contribution in
[3], presenting the essential ”bang-bang characterisation” and demonstrating suffi-
cient optimality criteria using the penalty function approach. An unconventional
method, as seen in [4], addresses a system with non-monotone nonlinearities driven
by evolution equations, but without limitations. The theoretical basis for linear
retarded control systems is expanded by Park et al.’s study in [5], which focuses
on essential optimality requirements for these systems. Furthermore, by utilizing
the Cesari principle and the Fillippov theorem, the authors of [6] show that there
are workable solutions to the Lagrange problem. In [7], Park et al. investigate
this domain by applying these results to delay differential equations. Jeong et al.
investigate Lipschitz nonlinearity with and without delay in a series of works [8—
10] addressing semilinear evolution equations. By easing essential differentiability
constraints for the nonlinear component, their contributions analyze the existence
of optimal control and create the maximal principle. Finally, writers utilize their
study for two practical applications in [9] one that deals with terminal values and
the other focusing on control strategy averaging.

As noted in references [11-15], Grimmer played a key role in developing resol-
vent operators for the investigation and demonstration of integro-differential sys-
tems. Combining the usage of the resolvent operator with fixed-point techniques
proves to be a straightforward and very efficient strategy when working with integro-
differential equations. We highly suggest reading [11-17] and the related literature
for a more comprehensive understand of resolvent operators. The author has pre-
sented the idea of nonlocal analytic resolvent operator integro-differential equations
in recent publications [16, 17]. This invention makes use of the regularity of devel-
opment in integro-differential systems and insights into resolvent operators. More-
over, the author explores the controllability of integro-differential inclusions using
resolvent operators in a fairly recent work [18], utilizing resolvent operators and
Bohnenblust-Karlin’s fixed-point method.

Wang et al. (as described in [19]) addressed the idea of mild solutions in the con-
text of fractional-order systems, using a priori estimation approaches and extending
these solutions to a global interval within integro-differential fractional systems. In
reflexive Banach spaces with specific delays, their most recent studies [20-24] investi-
gate the necessary conditions for the best possible management of abstract fractional
semilinear systems. They used well-established methods to obtain conclusions for
both stochastic and deterministic systems. Furthermore, these authors investigated
the best control results for real-world nonlinear control problems such as dispersion
equations, population dynamics, and thermoelasticity, in [25-27]. These studies
highlight the relevance of their findings by highlighting optimal control strategies in
real-world situations.

The foundational concepts introduced in references [28] and [29], incorporating
a fixed-point theorem to establish conditions ensuring the existence and uniqueness
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of the mild solution. Using resolvent operators, the author of [30] derives sufficient
conditions for optimal control in second-order semilinear integro-differential control
systems. Moreover, the authors extend their exploration to the realm of optimal
control for this semilinear second-order system. In [31],[32] authors investigates op-
timal feedback control for stochastic fractional systems in Hilbert spaces, focusing
on neutral and Caputo fractional evolution systems. Employing fractional calculus
and fixed point theory, it establishes the existence of mild solutions and feasible
pairs through advanced mathematical techniques. Recently author [33] explores op-
timal control of fractional stochastic nonlocal semilinear systems in Hilbert space,
establishing existence and uniqueness of mild solutions and proving optimal con-
trol using advanced mathematical techniques. To the best of our knowledge, no
paper has been published on the optimal control for stochastic second-order semi-
linear integro-differential systems employing resolvent operators, which is motivated
by the work mentioned above. Our results are based on the fundamental concepts
of [30-39] with appropriate adjustments. These findings mark a significant leap
forward, contributing substantially to the advancement of optimal control theory
specifically tailored for second-order systems. This innovative approach offers new
perspectives and methodologies, potentially enhancing the understanding of these
complex control systems.

The rest of the paper is structured as follows:
Segment 2: Introduces elementary definitions crucial to understanding the subse-
quent discussions.
Segment 3: Focuses on proving the existence and uniqueness of the mild solution
(with Lipschitz nonlinearity) for the given control differential equation.
Segment 4: Explores and establishes the existence of optimal control within the
context of the presented framework.
Segment 5: Provides an illustrative example aimed at validating and showcasing
the practical implications of the obtained results.

2 Preliminaries

Consider two separable Hilbert spaces U and V. Let I represents the interval [0, 7.
Let (2, F,P) represents a complete probability space, with F¢ C F and F¢,0 <
¢ < T, which are right continuous increasing it contains a complete family of sub
o-algebras. {e,}22, represents the complete orthonormal system in U and {8,}32,
represents a sequence of independent Brownian motions which satisfy the following
condition.

W(s) =Y VAuBen, 0< s <T.
n=1

where {A\,}22, is a bounded sequence and A, € RT U {0} for n € N, with Qe,, =
Anén, n € N with tr(Q) = Y02 Ay < 0o. Then, a U-valued stochastic process
W (s) is referred to as a Wiener Process. F . represents the sigma algebra that is
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produced by {W(z) : 0 < z <}, and it is referred to as normal filtration. fp = F
as well.

Let L(U,V) represent the space of bounded operators defined from U to V, using
the usual operator norm. For ¢ € L(U, V), we define

10113 = tr(wQu™) = 3 IV Anten| >
n=1

||¢||22 < 00, then 9 is a Q-Hilbert Schmidt operator. Lg(U, V') represents the space
of operators ¢ : U — V, where ¢ is the Q-Hilbert Schmidt operator. Lg(U, V)
represents a completion of L(U,V) with respect to the topology created by the
norm || - ||o is a Hilbert space related to the topology of norms.

In terms of norm topology ||z(-)|| = (E[|2(¢)|[*)*/2, L2(, V) is a Banach space
that contains V-valued integrable, strongly measurable random variables, where
E(-) represents the expectation with respect to the measure P.

Let C(]0,T7,L2(€2,V)) be the space of continuous maps defined from [0,7] into
Ly(2, V), which is a Banach space and fulfilling supg< <7 E||2(s||* < co. Suppose
Va is the closed subspace of C([0,T], L2(Q,V)) with F . -adapted, measurable, V-
valued processes z € C([0,T], L2(2,V)) equipped with the norm

1
2
nmwz(wpmmm@).
0<c<T

Let the integral cost function be

T

) s = B{ [ D66 0te)ac
0

subject to the equations

() = A9 + [ Blsw)sl)do + Bul) + Fls.5(6) + ol ) D7

cel=[0,11,

2(0) = 29 €V,
(2) Z(0)=z€V.

In section 4, the integrand L is defined, the function z(-) is V-valued stochastic pro-
cess. The domain U of the control function v(-) is a separable reflexive Hilbert space.
The operators A(s) and #(s,w), defined respectively on domains D(A(s)) C V and
D(#B) C V, are closed and linear within the space V. Furthermore, the operator
B : U — V is bounded, the functions F: I x V — V and ¢ : [0,T] x V — L(U,V)
are nonlinear. z(0), 2" are V-valued F g-measurable random variables which are in-
dependent of W. Notably, the domain D(%) remains independent of the parameters
(¢,w) in consideration.

The admissible set U,q is defined as follows:

Uad :={v()|[0,T] x Q — U is measurable}
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as per [40], v represents a stochastic process included to F ¢, and ]EfOT llu(s)|[Pds <
oo. It is evident that Uy C Ly([0,T];U)(1 < p < 00) and Uyg # 0 are convex,
closed, and bounded.

Consider Ay denote the set of admissible state-control pairs (z, v), z denotes the
mild solution of a semilinear differential equation (2) subject to the control v € Uad.
The optimal control problem is formulated as:

Find (2°,v%) € Auq such that
J(2°0%) :=inf J(2,0) : (2,v) € Agqg = 0.

Hereafter, the essential findings, fundamental theories, and crucial lemmas are
presented systematically. The subsequent content unfolds as follows, (V, |-|) signifies
a Banach space. The operators A(s) and %B(s,w), where 0 < w < ¢, represent linear
operators, which is closed, established on D(A) and D(%), respectively. An essential
assumption is that the density of D(A) should be contained in V. D(A) is the space
equipped with the graph norm produced by A(s) constitutes a Banach space. For
simplicity, it’s assumed that all these norms are interchangeable. A straightforward
condition ensuring this characteristic is the existence of A € p(A(s)), the resolvent
set of A(s), such that a bounded linear operator (A — A(5))™! : V — D(A) exists.

Consider the second-order IVP,

(3) Z1(¢) =AQz() + f(0), 0<s,¢<T,

(4) 2(w) =20, 2 (w) =2

In the given setup, A(s) : D(A) C V — V, where ¢ € [0,T], stands as a closed
linear operator with dense definition. Furthermore, f : [0,7] — V represents a
fitting function. For more comprehensive insights, readers are directed to explore
references [29, 41-45]. Many of these sources extensively discuss the relationship
between the existence of equations (3)-(4) and the form of S(s, s), represented as

2"(¢) = A(5)2(s), 0<c¢<T.

If we suppose that Vz € D(A), the mapping ¢ — A(<)z is continuous, we then assume
that A(-) generates the sequence (S(s,w))o<w<c<r. This concept is elaborated in
Kozak’s work [42], under Reamrk 2.1, and is also referenced in Henr'iquez’s work
[46], specifically in Definition (1.1). We recommend consulting these works for a
detailed examination of this matter. However, in our present scope, we consider
that S(-)z exhibits continuous differentiability Vz € V, with its derivative uniformly
bounded on bounded intervals. This condition suggests the existence of K7 > 0 such
that
1S(s + h,w) = S(s,w)|| < Ki|hl,

YV w,s,6+ h € [0,T]. Let’s determine the operator C(s,w) = —M

f :[0,T] — V is an integrable function. The mild solution can be defined, z :

. Suppose
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[0,T] = V of the system (3)-(4) as:

2(5) = Cle.w)2 + (6, w)z" + /0 56,6 F(O)de.

Introduce the integro-differential system of second order

%) 20 = AQs0) + [ B9k, wosT,
(6) 2(w) =0, Z(w)=z€V,

for 0 < w < T. This problem has been addressed in [45]. Let us denote the set
A = {(s,w):0<w<¢<T}. Now, let us introduce certain conditions that the
operator (-) satisfies:

Remark 2.1. [45]

(B1) For each 0 < w < ¢ < T, B(s,w) : [D(A)] = V is a bounded linear operator,
additionally for every z € D(A), %(-,-)z is continuous and

12 (s,w)z|l < bllzll(p(ay
for b > 0 which is independent of w,c € A.
(B2) There exists Lg > 0 such that
2(c2,w)z — B(s1,w)z|| < Laglsz — s1lllzllipeay-

VzeD(A),0<w<g<gu<T.
(B3) There exists by > 0 such that

|

It has been demonstrated that a family (V(s,w))c>s is associated with the prob-
lem (5)-(6) under these circumstances. Going forward, Assuming the presence of a

<
/ s<<,w>%<w,<>zde < bill2|
0

for all z € D(A).”

resolvent operator, let’s include its features into our definition.

Definition 2.2. [{5] “A family of bounded linear operators (V(s,w))c>w on V is
called a resolvent operator for the system (5)-(6) if it satisfies:

(a) The map V : A — L(V) is strongly continuous, V(s,-)z is continuously differ-

. 0 0
entiable for allz € V, V(w,w) =0, 8—gV(<,w)|§:w =TI and al/(c,wﬂw:g =-I
(b) For any (c,w) € A and for any x € D(s,w), the function V(s,w)x is a solution
of the system (5)-(6), which means that
82 S
saVswls =AY W + [ B OV(E wpad.

w

forall0<w<¢<T.”
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Condition (a) implies the existence of K > 0 and K > 0 such that

9 _
— V(W <K, (sw)eA.

<K
Vel <Kl

Furthermore, the operator that is linear
<
G(s,Q)z = / B(s,w)V(w,s)zdw, z € D(A), 0 < (<< T,
¢

can be extended to the space V. Denoting this extension by the same notation
G(s,¢), the mapping G : A — L(V) is strongly continuous. Moreover, it can be
verified

(7) Vis, Oz = S(s, ) + /< " S(6, )G lw, C)udw, ¥z € V.

As V(+) is uniformly Lipschitz continuous, there exists Ly > 0 such that
(8) V(S +h, Q) =V(s, Oll < Lylhl, ¥ <,c+h, ¢ €[0,T].

Let an integrable function g : I — V. The following nonhomogeneous problem

9) z"(¢) = A(¢)z(s) + /Ogﬂ(g,w)Z(W)dw +9(), sel=][0,T]
(10) 2(0) =2 2'(0) = 2!,

has been discussed in [45]. Now, let’s present the mild solution for the system

(9)-(10).

Definition 2.3. [/5] “Assume 20,21 € V. The continuous function z : [0,T] — V
given by

z(s) = R — +V(s,0)z! + /OgV(c,w)g(w)dw

is called the mild solution for the system (9)-(10).”

Definition 2.4. A mild solution of system (2) is defined as a I c-adapted stochastic
process z(s) € C([0,T]; L2(Q2, V) if z(s) is measurable for each v(-) € Ly([0,T);U)
and the following stochastic integral equation:

(0) == 20 1 v 0 + [ Vs + [ Vi wFw )

(11) +/0<V(§,w)o(w,z(w))dW(w), cel

is fulfilled.
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3 Mild Solution

In this section we discuss the existence and uniqueness of mild solution for equation
(2). Some constraints on nonlinear functions are applied in order to get the results.

(i) The functions ¢ — F(s, z(s)) and ¢ — o(s, 2(¢)) are measurable for all z € V.

(ii) F:[0,T]|xV =V, 0:[0,T]|xV — L(U, V) are functions that satisfy both the
linear growth and Lipschitz conditions. Furthermore, F' & o are continuous
functions. Overall, it is assumed that there are constants that are positive L
and Lo such that

I1E(t2) = Ft,w)? < Lillz—wll?,  |IF(,2)I]” < L1 +[]2]),
lo(t.2) —otw)|* < Lollz—wlf?,  [lo(t2)|* < Le(1+ [|2][*).

(iii) Consider a control problem where the controls, denoted v are chosen from a
Hilbert space that is reflexive U. The operator B € Lo ([0,T]; L(U,V)) and
|| B]|o stands for the norm of operator B in the Banach space Lo ([0, T]; L(U,V)).
L(U,V) represents all operators that have been defined U to V that are both
linear and bounded.

(iv) The map U(-) : [0,T] = oU \ {¢} signifies a multivalued operator with closed,
convex, and bounded value sets, where U(-) C Q is graph measurable for

bounded set 2 in U. Here 2V represents the power set of U.

Theorem 3.1. For any control function v(-) € U,g, the system (2) exhibits a unique
mild solution in [0,T], under the provided assumptions (i) — (iv).
Proof: Define an operator ® : Vo — Vo such that

(@2)() = —(%V(g,())zo +V(s,0)21 + /0g V(s,w)Bu(w)dw + /0< V(s,w)F (w, z(w))dw
+ oo
0

We shall now establish the result that provides a mild solution (11) for the system
(2) on [0,T]. To do this, we shall demonstrate that ® has a fized point in space Va.
The result is demonstrated using the classical contraction fixed point theorem.
Firstly, we proof that ®(Va) C Va. Let z € Vs, then

(12) E|[(®2)(s)||* < 5[T1 + To + T3 + Ty + T)

17
nh o= IE3||—8—§V(<70)2~’0H2

IN

2Kz
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Similarly Ty < 2K2||z1||?. Neat, using the Cauchy-Schwarz inequality, we have

5 =

IN

IN

IN

According to condition (ii) and the cauchy-Schwartz inequality,

Ty

and

15

Thus (12) becomes

2
i

/§V(§,w)Bv(w)dw
0

</0< V(s @)l |IB(<JJ)||IE<:||1)(W)|dw)2

K| [ §E||v<w>|2dw]2

K?|B||zo{(/ogdw)p’ﬁl(/Ognv(w)n%dw)ér
)

2(p—1

K2||BIRlIZ, qomyanT 7

2

/O€ V(s,w)F(w, z(w))dw

_E‘

\%

IN

5( [ |v<c,w>F<w,z<w>>||vdw)2
= §||F(W7Z(w))|vdw>2

S
K°T /0 EJ|F(w, ()3 dew

IN

IN

IN

S
KQT/ Lr(1+E|[z(w)||?)dw
0

IN

we(0,T]
K*TLpT(1+ ||2|[3,)
= K’T?Lp(1+2|],)

IN

2
_E‘

/0g V(s,w)o(w, z(w))dW (w)

IN

]E< /0 ' v<<,w>a<w,z<w>>||dW<w>)2

IN

IN

K2r(Q)TL,T(1 + ||2]|%,)
K2r(Q)T*Lo (1 + ||2]3,)

E[[(@2)()I* < a + T2,

S
KZTLF/ <1+ sup E||z(w)||2v)dw
0

& (@1 ( [ Elo@)lBave))
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where the preferred constants are a > 0 and T > 0. The outcome is that ® maps V5
into itself.

We then demonstrate that ® is a contraction map. For wy,ws € Va, applying the
Cauchy-Schwartz inequality and condition (i), it concludes

2
[(@wn)(<) — (@un) () < zE\

/0 V6. w)[F(s, wn () — F(s, wa(v))]dv

2
+ QE‘

/Og V(s w)[o(s, wi(v)) = o(s, wa(v))]dW (v)

IN

2 <K2(L1 + LQt’I“(Q))TQ) [Jwy — ng‘z/Q
Consequently if
(13) 2<K2(L1 + L2tr(Q))T2> <1

therefore it is evident that ® has a unique fixved point in Vo, which is a solution of (2).

Proceeding with the previously mentioned procedure on the interval [0, T*], [T*,2T%], ..

so that T* fulfills (13), The additional condition on T can be removed easily.

In order to get the main outcomes, for system (2), we construct a priori estimate
of the mild solution.

Lemma 3.2. (A priori estimate) Suppose that system (11) on [0,T)] is the mild
solution of system (2), corresponding to control v. Then, a constant C = C(v) > 0
exists such that

El|z(s)|[* < C, V< €[0,T].

Proof: With the use of Holder’s inequality and conditions (it), we obtain

2 2

0
Ellz()| < 5EH—8—§V(§,O)zO

<
+5E[|V(s,0)z1]|? +5EH/ V(s, w)Bo(w)dw
0

2

+ 5]EH/0§V(<,UJ)F(w,z(w))dw 2+5EH/OgV(g,w)a(w,z(w))dW(w)

IN

~ r < 2
5K2||20]|* + 5K7||z1][* + 557 B3 /0 |U(W)||dw}

+ 5K2(LF+tr(Q)LU)T/0§{1+E||z(w)||2}dw

1
~ S > S
5220l ? + 5K2|[21| + 5K BI% (/ dw) (/ ||v<w>’z,dw)
L 0 0

~ 2(p—1)
SK2||z0|[” + 5Kzl [* + 5K B0l o, 0T 7

IN

© SKP(Lp 4 tr(Q)Lo)T /0 {14 El2(w)][*}dw

IN

=
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+ 5K?(Lp +tr(Q)Ly)T + 5K*(Lp + tr(Q)Lg)T/C]EHz(w)Hde.
0

It is now simple to determine the boundedness of z in Vo by applying Gronwall’s
inequality.

4 Results for Optimal Control

This section discusses existence results for second order stochastic optimal control
under the following assumptions:
Let us define the integrand as follows:

L:[0,T]xV xU — R".
where R* = R U oo, the following assumptions are satisfied by the integrand L:

M1) L:[0,T]xV x U — RU{oo} is F --measurable.

(M1)
(M2) Forall zeV ,c€0,T)], L(s, z,-) is convex on U.

(M3) For almost all ¢ € [0,T7], L(s, -, -) is sequentially lower semicontinuous on V' xU.
(M4) 1 > 0,j > 0, > 0 and o € L1([0,T];R) are constants that satisfy the
following condition:

L(s, 2,v) > a(s) + LE||2||* + jElv][f;

Theorem 4.1. The assumptions regarding the existence of a mild solution along
with conditions (M1) — (M4) being fulfilled imply for system (1), there is at least
one optimal pair (z°,v°) € Auq.. This pair satisfies:

J(2°%00) = IE{ /OTL(g,ZO(c),UO(c))dg} < J(z,0),¥(z,v) € Agq.

Proof: If the infimum of {J(z,v)|(z,v) € A4} equals +oo, the conclusion is
straightforward. Without loss of generality, let us consider inf{J(z,v)|(z,v) € Auq} :
0 < 4o00. From conditions (M1) — (M4), we establish § > —oo. By leveraging the
concept of infimum, a sequence of feasible pairs (2™, v™) € Auq emerges, forming a
minimizing sequence where J(z™,v™) — 0 as m — +00, assuming (z™,v™) € Auq
as manimizing sequence. We know L,([0,T];U) is a reflexive separable Banach
space and {v™} is a bounded subset of Ly([0,T);U) and also {v™} C Uyq : where
m € N, so there is relabeled sequence {v™} and v° € L,([0,T); U) such that v™ — v°
(weakly converges as m — +00) in Ly([0,T];U). Knowing that Uyq C Ly([0,T); U)
is bounded, closed and convex, Mazur’s lemma allows us to affirm that 1° € Uyg.
Let us now assume that the sequence of solutions of system (2) is given by {z™},
which corresponds to the sequence of controls {v"™}, that is

2m(6) = _a%v(g,o)z() +V(5,0)z1 + /(: V(s, w){Bv"™(w) + F(w, 2™ (w))}dw
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S
/V(g,w)a(w,zm(w))dW(w).
0
By Lemma 1, it is clear that 3 § > 0 such that
E|[z™2 <6, m=0,1,2,34..,

Given the control v° € Uyq, let 20 be the mild solution for system (2),

0s

) = —QV(Q 0)z0 + V(s,0)21 + /Oc V(s,w){Bv®(w) + F(w, 2°(w)) }dw

By using the Cauchy-Schwarz inequality, Holder inequality, and condition (M3) for
every s € [0,T], we obtain

2

E|l2"(¢) = 2%l < 3E /OgV(%w)[B(w)vm(W)*B(w)vo(w)]dw

2

+ 3E /(: V(s,w)[F(w, 2™ (w)) — F(w7zo(w))]dw

2

+ 3E /O< V(s,w)[o(w, 2™(w)) — o(w, 22 (w))]dW (w)

< SKQT(/OgllB(W)vm(w) B(UJ)UO(W)II”dUJ>p

+ 3K*T(Li + tr(Q)Ls) /0§E||zm(w) — zo(w)||2dw.

Using Gronwall’s inequality,

El"(s) = 2°(9)ll

IN

& ([ 1B - B <w>||?dw)’2”

(14) K*[[Bo™ = B2 om0

A

where K* is a independent (from m, s, v) constant.
Considering the strong continuity of B, we can state that

(15) || Bv™ — BUOHLP([O,T];U) =0 as m—
We deduce from equations (14) and (15) that
El[27 = 22|* = 0 as m — oo.

= E||z™ — 292 = 0 in C([0,T]; Lo(, V)] as m — .

Based on the conditions outlined in (Theorem 2.1,[47]), it is evident that Balder’s
assumptions hold true under (M 1) — (M4). By employing Balder’s theorem, we get,

(16) (z,v) = E/(: L(w, z(w),v(w))dw.
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in the strong topology of L1([0,T]; V') and weak topology of L,([0,T];U) C L1([0,T],U)
is sequentially lower semicontinuous. Therefore on Ly([0,T;U), J exhibits weak

lower semicontinuity. Additionally, as per condition (M4), J remains bounded be-

low by —oo. The infimum of J is achieved at v° € Uy, where

S
0 = lim EL(w, 2™ (w), v™(w))dw
m—0oQ 0
<
> / EL(w, 2°(w), v°(w))dw = J(2°,0°) > 6.
0

This completes the proof.

5 Examples

Assume the second order semilinear stochastic integro differential system:
S
2"(¢) = = Xz(c) + / e 9 sin(z(w))dw + 2°(<) + v() + 02()dW(s), < € [0,1],
0

with parameters: A =1,0 = 0.1,
initial conditions z(0) = 1,2'(0) = 0.

The cost function is:
N 2 1,
J(z,v) :=E =z7(s) + zv=(s)|ds ¢.
o 12 2

by generating the increments for Brownian motion and Euler-Maruyama method
to iterate over the time steps to update the state z and its derivative using the
Euler-Maruyama method and compute the integral term using numerical integra-
tion (trapezoidal rule).

We get the state trajectory z(t) and the control trajectory v(t) are plotted over
time.

State Trajectory Control Trajectory

1.00 4 —— State trajectory z(t) —0.65 1 — control trajectory v(t)

-0.70

—-0.75

—0.80

State z(t)
Control v(t)

—0.85

—0.90

—0.95

-1.00

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Time t Time t

Figure 1: state and control trajectories
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Conclusion on Trajectories

State Trajectory z(t):
The state trajectory z(t) shows how the state evolves over time under the influence of
the nonlinear dynamics and stochastic perturbations. The trajectory might exhibit
oscillatory behavior due to the nonlinear term 23(¢) and the integral term involving
sin(z(t)). Additionally, the stochastic component, represented by the Brownian
motion term oz (t)dW (¢) introduces randomness, causing fluctuations and deviations
from a deterministic path.

Control Trajectory v(t):
The control trajectory v(t) in this example is initially set to zero and remains zero
throughout the simulation. As a result, it does not directly influence the state tra-
jectory in this particular run. The state trajectory evolves based solely on the initial
conditions, system dynamics, and stochastic influences. In a more comprehensive
scenario, v(t) would be dynamically adjusted through an optimization process to
minimize the cost functional, potentially leading to more controlled and less oscilla-
tory state trajectories.

6 Conclusion

This paper presented a comprehensive framework for the optimal control of second-
order semilinear integro-differential stochastic systems using resolvent operators.
We established the existence and uniqueness of mild solutions and derived necessary
and sufficient optimality conditions. The application of resolvent operator theory
effectively managed the system’s integral and stochastic components, while the min-
imizing sequence approach and Mazur’s lemma facilitated the construction of the
optimal control. Our theoretical results were validated through an illustrative exam-
ple, demonstrating the practical applicability of our methods. This study provides
a robust foundation for further research and practical implementations in complex
stochastic control systems.
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